

Proposed Rezoning for Industrial Uses 140 Bridge Street, Picton

Traffic and Parking Assessment Report

Prepared for: Tebco Pty Ltd

December 2021

Report No: PT21001r01_Final

TABLE OF CONTENTS

1.	Intr	oduction	. 3
2.	Exis	sting Development / Conditions	. 4
2	2.1	Site Location	4
2	2.2	Existing Zoning	4
2	2.3	Existing Site Traffic Generation	4
2	2.4	Classification Criteria	5
2	2.5	Existing Road Network	5
2	2.6	Existing Traffic Flows	5
2	2.7	Mid-Block Capacity Assessment	7
2	2.8	Existing Intersection Operating Conditions	8
3.	The	Proposed Development	10
4.	Pot	ential Traffic Impacts	11
4	4.1	Introduction	11
4	4.2	Development Traffic Generation	11
4	4.3	Trip Distribution	11
4	4.4	Future Mid-Block Capacity of Old Bathurst Road	11
4	4.5	Future Intersection Operating Conditions	11
5.	Par	king and Access Review	13
į	5.1	Council DCP Parking Provision	13
į	5.2	Access Arrangements	13
6.	Co	nclusions	14
7.	Ap	pendix A – Intersection / Tube Counts	15
8.	Ap	pendix B – SIDRA Outputs	16
9.	Ap	pendix C – Plans of Potential Development Arrangement	17
10	. A	ppendix D – 19.0m Semi Trailer Turnina Path Assessment	18

List of Figures

Figure 1 - Site Location

List of Tables

- Table 1 Existing Weekday Peak Period Volumes in vicinity of site (veh/hr)
- Table 2 Bridge Street Outside No.140 Northbound Hourly Flows
- Table 3 Bridge Street Outside No.140 Southbound Hourly Flows
- Table 4 Austroads 2020 Lane Mid Block Capacities
- Table 5 Volume / Capacity Analysis of Old Bathurst Road
- Table 6 Level of Service Criteria
- Table 7 Existing Weekday AM / PM Intersection Operating Conditions
- Table 8 Existing vs Future Volume / Capacity Analysis of Old Bathurst Road
- Table 9 Existing Weekday AM / PM Intersection Operating Conditions

1. Introduction

This report has been prepared on behalf of Tebco Pty Ltd to present findings of a traffic and parking assessment of the proposed rezoning of the site known as 140 Bridge Street, Picton to allow industrial uses at the site.

The study has assessed existing traffic conditions, parking demands, access arrangements, future traffic conditions and design compliance.

The remainder of the report is set out as follows:

- Section 2 describes the existing traffic and parking conditions;
- Section 3 summarises the proposed development;
- Section 4 reviews the potential traffic impacts of the proposal;
- Section 5 reviews the design for compliance with relevant standards; and
- Section 6 presents the conclusions

2. Existing Development / Conditions

The following presents a summary of existing site and traffic conditions.

2.1 **Site Location**

The existing site is a greenfield site and includes a rear frontage to the Great Southern Railway Line and is located east of the Bridge Street Railway Overpass and west of an existing creek. The existing site is a greenfield site and its location is shown in Figure 1.

Figure 1 - Site Location

Source: Googlemaps

The sites at No.120 and No.140 are held by the same property owner. The development at No.120 Bridge Street includes light industrial operations, and the proponent has identified the need to expand operations into the site at No.140 Bridge Street which is currently zoned RU2 Rural Landscape.

The existing site at No.140 Bridge Street includes a total area of 10,520m².

2.2 **Existing Zoning**

As stated above whilst 120 Bridge Street (and all developments east of this site) are zoned Light Industrial the current zoning of No.140 Bridge Street is RU2 – Rural Landscape.

2.3 **Existing Site Traffic Generation**

As stated above the existing site is a greenfield site and does not generate any traffic.

2.4 Classification Criteria

It is usual to classify roads according to a road hierarchy in order to determine their functional role within the road network. Changes to traffic flows on the roads can then be assessed within the context of the road hierarchy. Roads are classified according to the role they fulfil and the volume of traffic they should appropriately carry. The RTA has set down the following guidelines for the functional classification of roads.

- Arterial Road typically a main road carrying over 15,000 vehicles per day and fulfilling a role as a major inter-regional link (over 1,500 vehicles per hour)
- Sub-arterial Road defined as secondary inter-regional links, typically carrying volumes between 5,000 and 20,000 vehicles per day (500 to 2,000 vehicles per hour)
- Collector Road provides a link between local roads and regional roads, typically carrying between 2,000 and 10,000 vehicles per day (250 to 1,000 vehicles per hour). At volumes greater than 5,000 vehicles per day, residential amenity begins to decline noticeably.
- Local Road provides access to individual allotments, carrying low volumes, typically less than 2,000 vehicles per day (250 vehicles per hour).

2.5 Existing Road Network

<u>Bridge Street</u> – is a local road providing an overpass over the Great Southern Railway Line connecting Thirlmere Way in the west with the Old Hume Highway in the east. The road also serves a large industrial precinct to the immediate east of the site at No.120 Bridge Street. Across the frontage of No.140 Bridge Street the road includes a single travel lane in each direction and unformed shoulders along with a posted speed limit of 60km/hr. Bridge Street at Old Hume Highway includes a 15 tonne load limit.

Old Hume Highway – is the key north-south sub arterial road through the area providing access to multiple suburbs along the corridor and full interchange access to the Hume Highway in the south. At its intersection with Bridge Street, the Old Hume Highway includes a single travel lane in each direction with unrestricted parallel parking permitted in most locations. The intersection of Old Hume Highway / Bridge Street is a priority controlled intersection with a separate right turn bay provided for southbound turning traffic into Bridge Street.

2.6 Existing Traffic Flows

To gauge existing traffic flows on the surrounding road network a seven (7) day tube counter was installed in Bridge Street between the existing railway line overpass and the creek (approximately central to the frontage of No.140 Bridge Street). Copies of the seven (7) day tube count can be found in **Appendix A** of this report.

In addition, an intersection count during morning and afternoon weekday peak road network periods was undertaken at Bridge Street / Old Hume Highway intersection. Copies of this intersection count is also provided in **Appendix A** of this report. The peak flows by direction in each street from the intersection count are summarised below.

Table 1 – Existing Weekday Peak Period Volumes in vicinity of site (veh/hr)

		Weeko	lay AM	Week	day PM
Road	Location	NB/EB	SB/WB	NB/EB	SB/WB
Old Hume Highway	North of Bridge Street	674	563	714	841
	South of Bridge Street	599	568	671	759
Bridge Street	West of Old Hume Highway	210	130	192	231

The peak hours recorded for the intersection were 7:45am – 8:45am in the AM period and 3:15pm – 4:15pm in the PM period. From Table 1 it can be seen that existing flows on surrounding roads are in generally in line with their classification.

In comparison, the recorded seven (7) day traffic flows by direction in Bridge Street across the frontage of the site are presented below.

Table 2 - Bridge Street Outside No.140 Northbound Hourly Flows

Hour	Mon	Tue	Wed	Thu	Fri	Sat	Sun		
Starting	8-Feb	9-Feb	3-Feb	4-Feb	5-Feb	6-Feb	7-Feb	W'Day	7 Day
AM Peak	196	179	187	163	187	106	84	Ave	Ave
PM Peak	93	96	108	100	100	89	81	1524	1360
0:00	1	0	0	0	0	1	5	0	1
1:00	3	2	1	2	2	2	0	2	2
2:00	7	9	8	5	9	2	1	8	6
3:00	11	9	13	14	14	4	3	12	10
4:00	39	38	45	46	39	7	1	41	31
5:00	125	127	129	133	111	26	5	125	94
6:00	144	150	158	153	163	49	33	154	121
7:00	161	154	148	143	155	75	29	152	124
8:00	196	179	187	163	187	96	64	182	153
9:00	101	89	96	108	105	92	81	100	96
10:00	87	79	86	72	92	106	84	83	87
11:00	68	73	66	69	69	105	69	69	74
12:00	60	96	73	62	75	89	81	73	77
13:00	56	80	40	61	78	73	66	63	65
14:00	86	71	68	81	92	66	41	80	72
15:00	93	76	108	100	100	62	58	95	85
16:00	75	91	101	91	79	34	51	87	75
17:00	66	71	69	77	85	58	42	74	67
18:00	40	61	58	55	60	41	38	55	50
19:00	24	31	29	45	27	36	22	31	31
20:00	14	11	21	23	12	22	30	16	19
21:00	9	13	16	16	12	8	12	13	12
22:00	5	6	6	5	9	13	4	6	7
23:00	0	1	2	1	5	8	2	2	3
Total	1471	1517	1528	1525	1580	1075	822	1524	1360

Table 3 - Bridge Street Outside No.140 Southbound Hourly Flows

				Day of Week					
Hour	Mon	Tue	Wed	Thu	Fri	Sat	Sun		
Starting	8-Feb	9-Feb	3-Feb	4-Feb	5-Feb	6-Feb	7-Feb	W'Day	7 Day
AM Peak	88	85	95	100	103	106	86	Ave	Ave
PM Peak	197	235	198	220	189	145	90	1664	1499
0:00	4	5	3	5	3	6	14	4	6
1:00	2	2 2 3		5	4	3	8	3	4
2:00	3	4	0	2	3	2	7	2	3
3:00	2	3	2	2	2	3	2	2	2
4:00	3	3	5	2	3	2	1	3	3
5:00	6	12	16	16	11	6	2	12	10
6:00	36	31	38	27	39	17	9	34	28
7:00	53	60	50	61	52 77	35	19	55	47
8:00	75	73	89	68		49	26	76	65
9:00	71	83	95	100	86	77	51	87	80
10:00	88	75	80	78	92	98	86	83	85
11:00	87	85	73	94	103	106	73	88	89
12:00	107	90	100	88	99	145	75	97	101
13:00	88	105	82	88	114	104	85	95	95
14:00	103	122	103	114	124	106	82	113	108
15:00	174	176	186	172	189	88	90	179	154
16:00	197	235	198	220	179	86	71	206	169
17:00	196	198	185	176	180	77	76	187	155
18:00	115	158	150	140	128	59	47	138	114
19:00	62	64	77	89	68	52	45	72	65
20:00	46	62	58	74	55	45	33	59	53
21:00	33	40	39	50	36	25	19	40	35
22:00	17	15	21	11	28	20	13	18	18
23:00	4	7	4	9	19	25	4	9	10
Total	1572	1708	1657	1691	1694	1236	938	1664	1499

It is noted that traffic volumes past the development site in each direction in Bridge Street were somewhat lower than those recorded in Bridge Street the Old Hume Highway intersection.

2.7 **Mid-Block Capacity Assessment**

On the matter of mid-block capacity of roads surveyed versus demands, the following mid block capacities are typical by road type.

Table 4 – Austroads 2020 Lane Mid Block Capacities

Type of lane	One-way mid-block capacity (pc/h)
Median or inner lane	
Divided road	1000
Undivided road	900
Middle lane (of a 3 lane carriageway)	
Divided road	900
Undivided road	1000
Kerb lane	
Adjacent to parking lane	900
Occasional parked vehicles	600
Clearway conditions	900

The following is also noted from Austroads in regards to assumed mid block capacity variations to the above table:

Peak-period mid-block traffic volumes may increase to 1200 to 1400 pc/h/ln on any approach road when the following conditions exist or can be implemented:

- adequate flaring at major upstream intersections
- uninterrupted flow from a wider carriageway upstream of an intersection approach and flowing at capacity
- control or absence of crossing or entering traffic at minor intersections by major road priority controls
- control or absence of parking
- control or absence of right turns by banning turning at difficult intersections
- high-volume flows of traffic from upstream intersections during more than one phase of a signal cycle
- good co-ordination of traffic signals along the route

Thus, as Bridge Street does not include any formal parking with little to no side friction from side accesses, the adoption of 1,200 vehicles pc/h/ln is appropriate. The following existing volume capacity ratio by direction for Old Bathurst Road.

Table 5 – Volume / Capacity Analysis of Old Bathurst Road

Road	Mid Block	AM Peak Hour	AM Peak	PM Peak Hour	PM Peak
	Capacity	One Way Flow	V/C	One Way Flow	V/C
Bridge Street – Eastbound	1,200	152	0.127	95	0.079
Bridge Street – Westbound	1,200	55	0.486	179	0.149

^{*}Outside No.140 Bridge Street

From Table 5 it is noted the existing AM / PM peak hour flows by direction in Bridge Street are well below the expected mid-block lane capacity in each direction.

2.8 **Existing Intersection Operating Conditions**

All intersections surveyed have been analysed using the Sidra Intersection analysis program. Sidra Intersection determines the average delay that vehicles encounter, the degree of saturation of the intersection, and the level of service. The degree of saturation is the ratio of the arrival rate of vehicles to the capacity of the approach. Sidra Intersection provides analysis of the operating conditions which can be compared to the performance criteria set out in Table 6.

Table 6 - Level of Service Criteria

Level of Service	Average Delay per Vehicle (secs/veh)	Signals & Roundabouts	Give Way & Stop Signs
Α	less than 14	Good operation	Good operation
В	15 to 28	Good with acceptable delays & spare capacity	Acceptable delays & Spare capacity
С	29 to 42	Satisfactory	Satisfactory, but accident study required
D	43 to 56	Operating near capacity	Near capacity & accident study required
E	57 to 70	At capacity; at signals, incidents will cause excessive delays Roundabouts require other control mode	At capacity, requires other control mode
F	> 70	Extra capacity required	Extreme delay, traffic signa or other major treatment required

Adapted from RTA Guide to Traffic Generating Developments, 2002.

For roundabouts and priority intersections, the reported average delay is for the individual movement with the highest average delay per vehicle. At signalised intersections, the reported average delay is over all movements. The two intersections surveyed have been modelled as a network given their close proximity to each other. The existing weekday and weekend day intersection operating conditions are presented in Table 7. Average delay is expressed in seconds per vehicle. It should be noted that given their close proximity the intersections have been modelled as a network within SIDRA.

Table 7 – Existing Weekday AM / PM Intersection Operating Conditions

		Weekday A	M Peak	Weekday PM Peak			
Intersection	Control	Av Delay	LOS	Av Delay	LOS		
Bridge St / Old Hume Highway	Priority	10.7	Α	13.9	Α		

Avg Delay (sec/veh) is over all movements at signals, and for worst movement at priority and roundabouts

From Table 7 it is noted that the intersection of Bridge Street / Old Bathurst Road currently operates at a satisfactory level of service with spare capacity.

Copies of the SIDRA outputs are provided in **Appendix B** of this report.

3. The Proposed Development

The key components of the proposed development are summarised below

- Rezoning of the existing portion of land from 'Rural Landscape' to 'IN2 Light Industrial'
- Following rezoning seeking to achieve a potential 124m x 18m (2,232m² GFA) light industrial building on site to house expanded operations of the site at No.120 Bridge Street.
- Truck only entry in Bridge Street near railway overpass
- Light Vehicle entry / exit and truck exit driveway in Bridge Street central to the site.
- Design of the driveway access to accommodate a 19.0 semi-trailer.
- On-site parking provision for a total of **35 spaces**.

A preliminary layout plan of the potential arrangements of the site upon rezoning is provided in **Appendix C** of this report.

4. Potential Traffic Impacts

4.1 Introduction

The following presents an assessment of the potential traffic impacts of the proposal using the Roads and Traffic Authority Guide to Traffic Generating Developments standard approach.

4.2 Development Traffic Generation

Applying the Transport for NSW Technical Direction TDT2013/04a (regional rate) to the potential total GFA industrial development yield of 2,232m², the traffic generation of No.140 Bridge Street would equate to **16 AM Peak** trips two way and **18 PM Peak** trips two way.

4.3 Trip Distribution

As it is noted that the Bridge Street overpass includes a 15-tonne load limit, it is expected that the majority of the trips generated by the development would travel to / from the site via the Bridge Street / Old Hume Highway intersection.

The trips generated by the development have been distributed through this intersection mirroring the northbound and southbound peak hour splits in Old Hume Highway. A 50/50 split of AM and PM peak trips for inbound and outbound has been adopted being an industrial use type of development.

4.4 Future Mid-Block Capacity of Old Bathurst Road

The additional traffic generated by the proposal has been added to Bridge Street in accordance with the adopted distribution of trips presented above. The resulting future mid-block capacity ratios for Old Bathurst Road is presented below in **Table 8**.

Road	Mid Block Capacity	AM Peak Hour Two Way Flow	AM Peak V/C	PM Peak Hour Two Way Flow	PM Peak V/C
Existing					
Bridge Street – Eastbound	1,200	152	0.127	95	0.079
Bridge Street – Westbound	1,200	55	0.486	179	0.149
Future					
Bridge Street – Eastbound	1,200	165	0.138	109	0.091
Bridge Street – Westbound	1,200	68	0.057	193	0.161

Table 8 – Existing vs Future Volume / Capacity Analysis of Old Bathurst Road

From **Table 8** it is noted that following full development of the rezoned site the future traffic flows in Bridge Street would not result in the mid-block capacities being exceeded in either direction during the AM and PM peak hour periods.

4.5 Future Intersection Operating Conditions

The additional traffic generated by the proposal has been added to the surrounding road network in accordance with the adopted distribution of trips presented above. The resulting future intersection operating conditions is presented below in **Table 9**.

Table 9 – Existing Weekday AM / PM Intersection Operating Conditions

		Weekday A	M Peak	Weekday PM Peak			
Intersection	Control	Av Delay	LOS	Av Delay	LOS		
Bridge St / Old Hume Highway	Priority	10.8	Α	14.2	В		

Avg Delay (sec/veh) is over all movements at signals, and for worst movement at priority and roundabouts

From Table 9 it is noted that the intersection of Bridge Street / Old Hume Highway would continue to operate at a satisfactory level of service in the future upon full development of the subject site if rezoning was approved.

Further, there would be no requirement for upgrades at the intersection to accommodate the traffic demands of the proposal.

Overall, the traffic impacts of the proposal are considered acceptable.

5. Parking and Access Review

5.1 Council DCP Parking Provision

It is expected that future development applications of each component of the development would provide parking in accordance with the requirements of Councils DCP.

On the basis that the building shown in **Appendix C** of this report was achieved (2,232m² of GFA), than the site would require a total of **32** car spaces.

As the preliminary layout plan shown in **Appendix B** achieves **35 spaces**, the parking arrangements would comply with the requirements of the DCP and thus considered satisfactory.

5.2 Access Arrangements

The nature of Bridge Street across the frontage of the site is that it was observed traffic speeds were generally slow in the vicinity of the railway overpass and the largest possible exit sight distance of the site would be in a position central to the existing creek and bend in Bridge Street.

Thus, it is suggested that an entry only driveway should be considered in the vicinity of the railway overpass where observed speeds were the slowest with an exit only driveway located central to the bend in Bridge Street and the creek.

The arrangements described above along with the potential layout plan have been reviewed in AutoTURN for the largest vehicle expected to access the site, a 19.0m semi-trailer and are provided in **Appendix D** of this report.

Such arrangements would be considered a satisfactory access solution for the rezoned site subject to a future development application.

6. Conclusions

This report has reviewed the potential traffic impacts of the proposed rezoning of the site known as 140 Bridge Street to allow light industrial uses at the site. The findings of this assessment are presented below:

- 1. The traffic generated by a potential development of the rezoned site would be generally low and would not impact to a point of detriment on the surrounding road network.
- 2. The intersection of Bridge Street / Old Hume Highway currently operates at a satisfactory level of service.
- 3. The intersection of Bridge Street / Old Hume Highway would continue to operate at a satisfactory level of service in the future should full development of the site occur allowing for light industrial uses.
- 4. The future traffic flows in Bridge Street would remain well below the mid-block lane capacity in either direction in both the AM and PM peak hour periods.
- 5. The proposed parking provision would comply with the minimum requirements of Council's DCP.

Overall the traffic impacts of the proposal are considered acceptable.

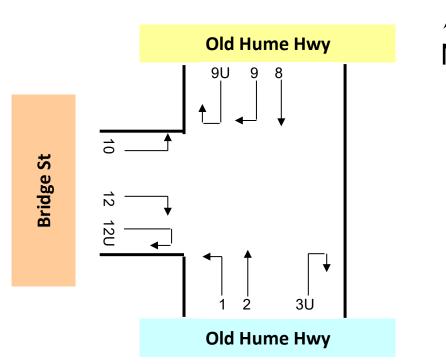
7. Appendix A – Intersection / Tube Counts

Client : Positive Traffic Pty Ltd

Suburb : Picton

Location : 1. Old Hume Hwy / Bridge St

Day/Date : Wed, 3rd Feb 2021


Weather : Fine

Description : Classified Intersection Count

: 15 mins Data

Class 1 Class 2 Class 3

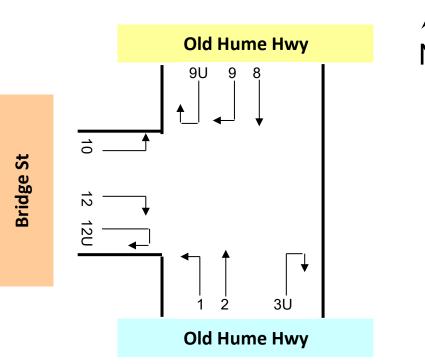
Classifications Cars Trucks Buses

Approach								Old Hur
Direction		Direct (Left					ction 2	
			sa				χ _i	T _
Time Period	Cars	Trucks	Buse	Total	Cars	Trucks	Buse	Total
6:00 to 6:15	6	1	0	7	82	9	0	91
6:15 to 6:30	2	0	0	2	95	6	1	102
6:30 to 6:45	8	0	0	8	92	11	2	105
6:45 to 7:00	18	0	0	18	90	5	3	98
7:00 to 7:15	15	3	1	19	102	7	3	112
7:15 to 7:30	6	0	1	7	117	3	4	124
7:30 to 7:45	6	0	0	6	118	2	2	122
7:45 to 8:00	13	1	1	15	121	8	0	129
8:00 to 8:15	10	3	0	13	116	10	0	126
8:15 to 8:30	13	2	0	15	151	5	1	157
8:30 to 8:45	6	2	0	8	127	6	3	136
8:45 to 9:00	21	0	0	21	65	2	1	68
AM Totals	124	12	3	139	1,276	74	20	1,370
15:00 to 15:15	7	0	0	7	136	2	1	139
15:15 to 15:30	27	0	0	27	181	6	3	190
15:30 to 15:45	12	0	1	13	123	5	1	129
15:45 to 16:00	15	1	1	17	113	9	2	124
16:00 to 16:15	20	0	0	20	144	7	0	151
16:15 to 16:30	16	0	0	16	130	2	1	133
16:30 to 16:45	11	0	0	11	129	3	1	133
16:45 to 17:00	13	0	0	13	121	1	0	122
17:00 to 17:15	12	0	0	12	145	3	0	148
17:15 to 17:30	13	1	0	14	105	1	0	106
17:30 to 17:45	13	0	0	13	110	5	0	115
17:45 to 18:00	8	1	0	9	94	3	0	97
PM Totals	167	3	2	172	1,531	47	9	1,587

Approach	Old Hume Hwy																	Bri	dge St							
Direction				tion 8 ough)		Direction 9 (Right Turn)						ion 9U 'urn)		Direction 10 (Left Turn)							tion 12 t Turn)			Directi (U T	on 12U urn)	
Time Period		ars	rucks	Buses	otal	Cars	rucks	sass	otal	Cars	rucks	Buses	otal	ars	rucks	Buses	otal		Cars	rucks	Buses	otal	ars	rucks	Buses	otal
6:00 to 6:15		59	4	0	63	10	2	0	12	0	0	0	0	25	2	0	27		7	0	0	7	0	0	0	0
6:15 to 6:30		68	5	0	73	15	0	0	15	0	0	0	0	26	6	0	32		5	2	0	7	0	0	0	0
6:30 to 6:45		66	10	0	76	13	3	0	16	0	0	0	0	27	3	0	30		10	0	0	10	0	0	0	0
6:45 to 7:00		118	3	1	122	38	0	0	38	0	0	0	0	34	4	0	38		7	0	0	7	0	0	0	0
7:00 to 7:15		88	15	0	103	23	3	0	26	0	0	0	0	27	1	1	29		3	2	0	5	0	0	0	0
7:15 to 7:30		90	7	1	98	16	0	0	16	0	0	0	0	29	6	0	35		6	0	0	6	0	0	0	0
7:30 to 7:45		122	7	2	131	16	0	0	16	0	0	0	0	20	3	0	23		9	1	0	10	0	0	0	0
7:45 to 8:00		118	6	0	124	16	1	0	17	0	0	0	0	32	0	0	32		22	3	0	25	0	0	0	0
8:00 to 8:15		105	8	0	113	19	2	0	21	0	0	0	0	24	0	1	25		10	1	0	11	0	0	0	0
8:15 to 8:30		106	6	3	115	15	3	0	18	0	0	0	0	28	1	0	29		20	1	0	21	0	0	0	0
8:30 to 8:45		123	9	0	132	21	2	0	23	0	0	0	0	36	4	0	40		26	1	0	27	0	0	0	0
8:45 to 9:00		127	9	5	141	25	3	0	28	0	0	0	0	23	2	0	25		33	0	3	36	0	0	0	0
AM Totals		1,190	89	12	1,291	227	19	0	246	0	0	0	0	331	32	2	365		158	11	3	172	0	0	0	0
15:00 to 15:15		130	6	0	136	21	5	0	26	0	0	0	0	28	0	0	28		18	0	0	18	0	0	0	0
15:15 to 15:30		150	4	0	154	33	5	0	38	0	0	0	0	28	1	0	29		14	1	0	15	0	0	0	0
15:30 to 15:45		189	7	5	201	30	4	0	34	0	0	0	0	33	0	0	33		18	2	0	20	0	0	0	0
15:45 to 16:00		142	4	5	151	36	7	0	43	0	0	0	0	23	1	0	24		18	1	0	19	0	0	0	0
16:00 to 16:15		173	7	1	181	37	2	0	39	0	0	0	0	34	0	0	34		18	0	0	18	0	0	0	0
16:15 to 16:30		147	7	7	161	31	4	0	35	0	0	0	0	23	3	0	26		13	0	1	14	0	0	0	0
16:30 to 16:45		133	6	4	143	43	3	0	46	0	0	0	0	32	1	0	33		10	0	0	10	0	0	0	0
16:45 to 17:00		167	1	2	170	31	1	0	32	0	0	0	0	26	1	0	27		13	0	1	14	0	0	0	0
17:00 to 17:15		160	6	1	167	44	2	0	46	0	0	0	0	20	1	0	21		8	1	0	9	0	0	0	0
17:15 to 17:30		157	7	0	164	26	0	0	26	0	0	0	0	20	1	0	21		13	0	0	13	0	0	0	0
17:30 to 17:45		154	8	0	162	34	1	0	35	0	0	0	0	25	1	0	26		11	1	0	12	0	0	0	0
17:45 to 18:00		141	4	0	145	38	2	0	40	0	0	0	0	19	1	0	20		6	0	0	6	0	0	0	0
PM Totals		1,843	67	25	1,935	404	36	0	440	0	0	0	0	311	11	0	322		160	6	2	168	0	0	0	0

Client : Positive Traffic Pty Ltd

Suburb : Picton


Location : 1. Old Hume Hwy / Bridge St

Day/Date : Wed, 3rd Feb 2021

Weather : Fine

Description : Classified Intersection Count

: Hourly Summary

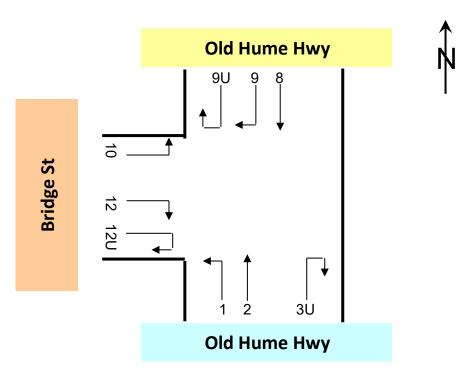
Approach								Old Hur	ne Hwy			
Direction		Direct (Left				Direc (Thro	tion 2 ough)			Direction (U Tu		
Time Period	Cars	Trucks	Buses	Total	Cars	Trucks	Buses	Total	Cars	Trucks	Buses	Total
6:00 to 7:00	34	1	0	35	359	31	6	396	0	0	0	0
6:15 to 7:15	43	3	1	47	379	29	9	417	0	0	0	0
6:30 to 7:30	47	3	2	52	401	26	12	439	0	1	0	1
6:45 to 7:45	45	3	2	50	427	17	12	456	0	1	0	1
7:00 to 8:00	40	4	3	47	458	20	9	487	0	1	0	1
7:15 to 8:15	35	4	2	41	472	23	6	501	0	1	0	1
7:30 to 8:30	42	6	1	49	506	25	3	534	0	0	0	0
7:45 to 8:45	42	8	1	51	515	29	4	548	0	0	0	0
8:00 to 9:00	50	7	0	57	459	23	5	487	0	0	0	0
AM Totals	124	12	3	139	1,276	74	20	1,370	0	1	0	1
15:00 to 16:00	61	1	2	64	553	22	7	582	0	0	0	0
15:15 to 16:15	74	1	2	77	561	27	6	594	0	0	0	0
15:30 to 16:30	63	1	2	66	510	23	4	537	0	0	0	0
15:45 to 16:45	62	1	1	64	516	21	4	541	0	0	0	0
16:00 to 17:00	60	0	0	60	524	13	2	539	0	0	0	0
16:15 to 17:15	52	0	0	52	525	9	2	536	0	0	0	0
16:30 to 17:30	49	1	0	50	500	8	1	509	0	 0	0	0
16:45 to 17:45	51	1	0	52	481	10	0	491	0	0	0	0
17:00 to 18:00	46	2	0	48	454	12	0	466	0	 0	0	0
PM Totals	167	3	2	172	1,531	47	9	1,587	0	0	0	0

Approach				Old Hur	ne Hwy												ridge St							
Direction			tion 8 ough)			Direc (Right	tion 9 : Turn)				ion 9U 'urn)				ion 10 Turn)				tion 12 t Turn)			Directio	on 12U urn)	
Time Period	Cars	Irucks	Suses	[otal	Cars	Irucks	guses	Fotal	Cars	Irucks	Suses	Fotal	Cars	Irucks	Suses	Fotal	Cars	Irucks	Suses	[otal	Cars	Frucks	Suses	Fotal
6:00 to 7:00	311	22	1	334	76	5	0	81	0	0	0	0	112	15	0	127	29	2	0	31	0	0	0	0
6:15 to 7:15	340	33	1	374	89	6	0	95	0	0	0	0	114	14	1	129	25	4	0	29	0	0	0	0
6:30 to 7:30	362	35	2	399	90	6	0	96	0	0	0	0	117	14	1	132	26	2	0	28	0	0	0	0
6:45 to 7:45	418	32	4	454	93	3	0	96	0	0	0	0	110	14	1	125	25	3	0	28	0	0	0	0
7:00 to 8:00	418	35	3	456	71	4	0	75	0	0	0	0	108	10	1	119	40	6	0	46	0	0	0	0
7:15 to 8:15	435	28	3	466	67	3	0	70	0	0	0	0	105	9	1	115	47	5	0	52	0	0	0	0
7:30 to 8:30	451	27	5	483	66	6	0	72	0	0	0	0	104	4	1	109	61	6	0	67	0	0	0	0
7:45 to 8:45	452	29	3	484	71	8	0	79	0	0	0	0	120	5	1	126	78	6	0	84	0	0	0	0
8:00 to 9:00	461	32	8	501	80	10	0	90	0	0	0	0	111	7	1	119	89	3	3	95	0	0	0	0
AM Totals	1,190	89	12	1,291	227	19	0	246	0	0	0	0	331	32	2	365	158	11	3	172	0	0	0	0
15:00 to 16:00	611	21	10	642	120	21	0	141	0	0	0	0	112	2	0	114	68	4	0	72	0	0	0	0
15:15 to 16:15	654	22	11	687	136	18	0	154	0	0	0	0	118	2	0	120	68	4	0	72	0	0	0	0
15:30 to 16:30	651	25	18	694	134	17	0	151	0	0	0	0	113	4	0	117	67	3	1	71	0	0	0	0
15:45 to 16:45	595	24	17	636	147	16	0	163	0	0	0	0	112	5	0	117	59	1	1	61	0	0	0	0
16:00 to 17:00	620	21	14	655	142	10	0	152	0	0	0	0	115	5	0	120	54	0	2	56	0	0	0	0
16:15 to 17:15	607	20	14	641	149	10	0	159	0	0	0	0	101	6	0	107	44	1	2	47	0	0	0	0
16:30 to 17:30	617	20	7	644	144	6	0	150	0	0	0	0	98	4	0	102	44	1	1	46	0	0	0	0
16:45 to 17:45	638	22	3	663	135	4	0	139	0	0	0	0	91	4	0	95	45	2	1	48	0	0	0	0
17:00 to 18:00	612	25	1	638	142	5	0	147	0	0	0	0	84	4	0	88	38	2	0	40	0	0	0	0
PM Totals	1,843	67	25	1,935	404	36	0	440	0	0	0	0	311	11	0	322	160	6	2	168	0	0	0	0

Client : Positive Traffic Pty Ltd

Suburb : Picton

Location : 1. Old Hume Hwy / Bridge St


Day/Date : Wed, 3rd Feb 2021

Weather : Fine

AM

Description : Classified Intersection Count

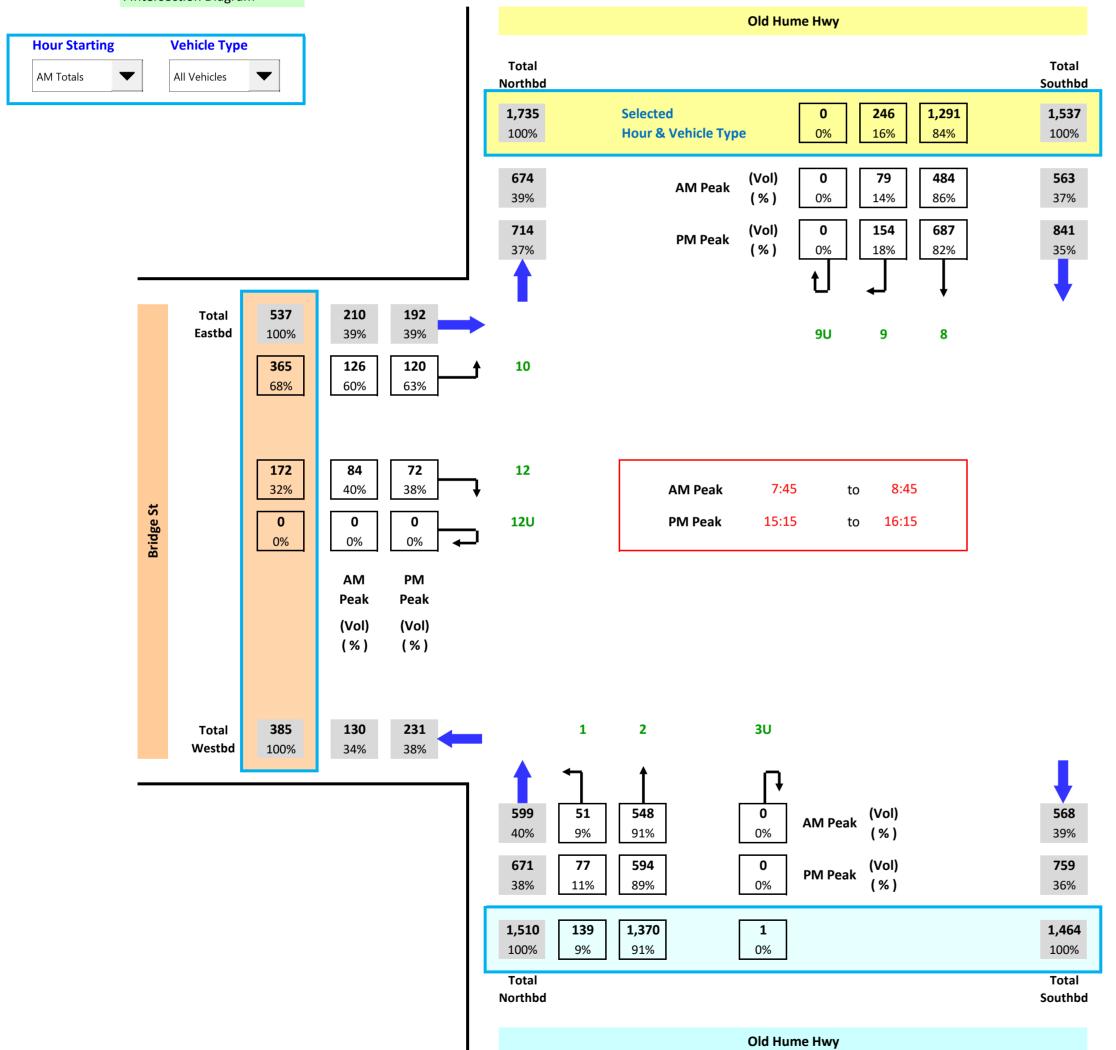
: Peak Hour Summary

proach Old Hume Hwy		Approach				
,	eri	od	Cars	Frucks	Buses	Total
)	8:45	557	37	5	599
)	-	16:15	635	28	8	671

Approac	ch		Old Hur	ne Hwy	
Time Peri	iod	Cars	Trucks	Buses	Total
to	7:00	393	32	6	431
to	7:15	422	32	10	464
to	7:30	448	30	14	492
to	7:45	472	21	14	507
	8:00	498	25	12	535
to	8:15	507	28	8	543
to	8:30	548	31	4	583
to	8:45	557	37	5	599
)	9:00	509	30	5	544
Гota	als	1,400	87	23	1,510
to	16:00	614	23	9	646
to	16:15	635	28	8	671
to	16:30	573	24	6	603
to	16:45	578	22	5	605
to	17:00	584	13	2	599
to	17:15	577	9	2	588
to	17:30	549	9	1	559
to	17:45	532	11	0	543
to	18:00	500	14	0	514
/I Tota	als	1,698	50	11	1,759

Client : Positive Traffic Pty Ltd

Suburb : Pictor


Location : 1. Old Hume Hwy / Bridge St

Day/Date : Wed, 3rd Feb 2021

Weather : Fine

Description : Classified Intersection Count

: Intersection Diagram

8. Appendix B – SIDRA Outputs

MOVEMENT SUMMARY

▽ Site: 101 [Bridge_Old Hume_PM_Fut (Site Folder: General)]

New Site

Site Category: (None) Give-Way (Two-Way)

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	INF VOLU [Total veh/h		DEM FLO [Total veh/h		Deg. Satn v/c		Level of Service		ACK OF EUE Dist] m	Prop. I Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South	n: Old	Hume Hv	vy											
1	L2	82	1	86	1.2	0.374	5.7	LOSA	0.0	0.0	0.00	0.07	0.00	57.5
2	T1	588	27	619	4.6	0.374	0.1	LOSA	0.0	0.0	0.00	0.07	0.00	59.1
Appro	oach	670	28	705	4.2	0.374	8.0	NA	0.0	0.0	0.00	0.07	0.00	58.9
North	: Old I	Hume Hw	/y											
8	T1	676	22	712	3.3	0.375	0.1	LOSA	0.0	0.0	0.00	0.00	0.00	59.8
9	R2	161	18	169	11.2	0.237	10.2	LOSA	1.0	7.7	0.65	0.86	0.68	49.6
Appro	oach	837	40	881	4.8	0.375	2.1	NA	1.0	7.7	0.12	0.17	0.13	57.5
West	: Bridg	je St												
10	L2	127	2	134	1.6	0.162	8.7	LOSA	0.6	4.4	0.56	0.80	0.56	51.2
12	R2	79	4	83	5.1	0.205	14.2	LOSA	0.7	5.0	0.81	0.94	0.86	47.0
Appro	oach	206	6	217	2.9	0.205	10.8	LOSA	0.7	5.0	0.66	0.85	0.67	49.5
All Vehic	les	1713	74	1803	4.3	0.375	2.6	NA	1.0	7.7	0.14	0.21	0.14	56.9

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: POSITIVE TRAFFIC PTY LTD | Licence: PLUS / 1PC | Processed: Thursday, 16 December 2021 8:40:52 PM

Project: Z:\2021 Projects\PT21001 - 120-140 Bridge Street, Picton\SIDRA\PT21001.sip9

INTERSECTION SUMMARY

▽ Site: 101 [Bridge_Old Hume_AM_Ex (Site Folder: General)]

New Site

Site Category: (None) Give-Way (Two-Way)

erformance Measure	Vehicles	Persons
ravel Speed (Average)	57.3 km/h	57.3 km/h
ravel Distance (Total)	1456.0 veh-km/h	1747.2 pers-km/h
ravel Time (Total)	25.4 veh-h/h	30.5 pers-h/h
esired Speed (Program)	60.0 km/h	
peed Efficiency	0.96	
ravel Time Index	9.50	
Congestion Coefficient	1.05	
Demand Flows (Total)	1437 veh/h	1724 pers/h
ercent Heavy Vehicles (Demand)	6.4 %	1724 pers/ii
ercent heavy venicles (Demand) Degree of Saturation	0.4 %	
	190.6 %	
ractical Spare Capacity	4261 veh/h	
ffective Intersection Capacity	4261 Ven/n	
Control Delay (Total)	0.89 veh-h/h	1.07 pers-h/h
Control Delay (Average)	2.2 sec	2.2 sec
control Delay (Worst Lane)	10.7 sec	
ontrol Delay (Worst Movement)	10.7 sec	10.7 sec
eometric Delay (Average)	1.4 sec	
top-Line Delay (Average)	0.9 sec	
lling Time (Average)	0.3 sec	
ntersection Level of Service (LOS)	NA	
FOV Death of Occurs Makinley (March Laws)	0.0	
5% Back of Queue - Vehicles (Worst Lane)	0.6 veh 4.3 m	
5% Back of Queue - Distance (Worst Lane)	4.3 m 0.00	
ve. Queue Storage Ratio (Worst Lane) otal Effective Stops	0.00 275 veh/h	221 noro/h
	0.19	331 pers/h 0.19
iffective Stop Rate Proportion Queued	0.19	0.19
roportion Queued erformance Index		0.13 27.9
snormance index	27.9	21.9
ost (Total)	1107.49 \$/h	1107.49 \$/h
uel Consumption (Total)	118.2 L/h	
arbon Dioxide (Total)	282.8 kg/h	
ydrocarbons (Total) ´	0.021 kg/h	
	0.045.	
Carbon Monoxide (Total)	0.315 kg/h	

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

NA: Intersection LOS for Vehicles is Not Applicable for two-way sign control since the average intersection delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Site Model Variability Index (Iterations 3 to N): 3.5 %

Number of Iterations: 6 (Maximum: 10)

Largest change in Lane Degrees of Saturation for the last three Flow-Capacity Iterations: 3.6% - 1.7% - 0.9%

Performance Measure	Vehicles	Persons
Demand Flows (Total) Delay Effective Stops Travel Distance	689,684 veh/y 429 veh-h/y 132,209 veh/y 698,884 veh-km/y	827,621 pers/y 514 pers-h/y 158,651 pers/y 838,661 pers-km/y
Travel Time	12,196 veh-h/y	14,635 pers-h/y
Cost Fuel Consumption Carbon Dioxide Hydrocarbons Carbon Monoxide NOx	531,596 \$/y 56,742 L/y 135,730 kg/y 10 kg/y 151 kg/y 297 kg/y	531,596 \$/y

MOVEMENT SUMMARY

▽ Site: 101 [Bridge_Old Hume_AM_Ex (Site Folder: General)]

New Site

Site Category: (None) Give-Way (Two-Way)

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	INF VOLU [Total veh/h		DEM FLO [Total veh/h		Deg. Satn v/c		Level of Service		ACK OF EUE Dist] m	Prop. E Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South	h: Old l	Hume Hv	vy											
1 2 Appro	L2 T1 oach	50 546 596	8 31 39	53 575 627	16.0 5.7 6.5	0.337 0.337 0.337	5.8 0.1 0.6	LOS A LOS A NA	0.0 0.0 0.0	0.0 0.0 0.0	0.00 0.00 0.00	0.05 0.05 0.05	0.00 0.00 0.00	57.0 59.4 59.2
North	n: Old H	Hume Hw	vy											
8	T1	481	29	506	6.0	0.272	0.1	LOSA	0.0	0.0	0.00	0.00	0.00	59.8
Appr	R2 oach	79 560	8 37	83 589	6.6	0.103 0.272	9.0	LOS A NA	0.4	3.1	0.59	0.78	0.59	50.5 58.3
West	: Bridg	e St												
10 12	L2 R2	125 84	5 6	132 88	4.0 7.1	0.153 0.150	8.4 10.7	LOS A LOS A	0.6 0.5	4.3 3.7	0.55 0.70	0.77 0.88	0.55 0.70	51.3 49.1
Appr	oach	209	11	220	5.3	0.153	9.3	LOSA	0.6	4.3	0.61	0.82	0.61	50.4
All Vehic	cles	1365	87	1437	6.4	0.337	2.2	NA	0.6	4.3	0.13	0.19	0.13	57.3

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: POSITIVE TRAFFIC PTY LTD | Licence: PLUS / 1PC | Processed: Thursday, 16 December 2021 8:40:50 PM

Project: Z:\2021 Projects\PT21001 - 120-140 Bridge Street, Picton\SIDRA\PT21001.sip9

INTERSECTION SUMMARY

▽ Site: 101 [Bridge_Old Hume_AM_Fut (Site Folder: General)]

New Site

Site Category: (None) Give-Way (Two-Way)

erformance Measure	Vehicles	Persons
ravel Speed (Average)	57.2 km/h	57.2 km/h
ravel Distance (Total)	1481.6 veh-km/h	1777.9 pers-km/h
ravel Time (Total)	25.9 veh-h/h	31.1 pers-h/h
esired Speed (Program)	60.0 km/h	·
peed Efficiency	0.95	
ravel Time Index	9.48	
ongestion Coefficient	1.05	
lamand Flaura (Tatal)	1462 veh/h	1755 para/h
emand Flows (Total)	6.3 %	1755 pers/h
ercent Heavy Vehicles (Demand)		
legree of Saturation	0.341	
ractical Spare Capacity	187.7 %	
ffective Intersection Capacity	4293 veh/h	
control Delay (Total)	0.96 veh-h/h	1.15 pers-h/h
control Delay (Average)	2.4 sec	2.4 sec
control Delay (Worst Lane)	10.8 sec	
control Delay (Worst Movement)	10.8 sec	10.8 sec
Geometric Delay (Average)	1.5 sec	
top-Line Delay (Average)	0.9 sec	
lling Time (Average)	0.3 sec	
ntersection Level of Service (LOS)	NA	
50/ Book of Overse Makieles (Monet Lene)	0.6 veh	
5% Back of Queue - Vehicles (Worst Lane) 5% Back of Queue - Distance (Worst Lane)	4.5 m	
,	0.00	
ve. Queue Storage Ratio (Worst Lane) otal Effective Stops	0.00 296 veh/h	355 pars/h
ffective Stop Rate	0.20	355 pers/h 0.20
roportion Queued	0.20	0.20
roportion Queded erformance Index	28.6	28.6
enormance muex	20.0	20.0
ost (Total)	1128.94 \$/h	1128.94 \$/h
uel Consumption (Total)	120.3 L/h	
arbon Dioxide (Total)	287.7 kg/h	
lydrocarbons (Total)	0.021 kg/h	
arbon Monoxide (Total)	0.321 kg/h	
Ox (Total)	0.621 kg/h	

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

NA: Intersection LOS for Vehicles is Not Applicable for two-way sign control since the average intersection delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Site Model Variability Index (Iterations 3 to N): 3.8 %

Number of Iterations: 6 (Maximum: 10)

Largest change in Lane Degrees of Saturation for the last three Flow-Capacity Iterations: 3.9% 1.9% 0.9%

Intersection Performance - Annual Va	lues	
Performance Measure	Vehicles	Persons
Demand Flows (Total)	701,811 veh/y	842,173 pers/y
Delay	459 veh-h/y	550 pers-h/y
Effective Stops	141,975 veh/y	170,370 pers/y
Travel Distance	711,177 veh-km/y	853,413 pers-km/y
Travel Time	12,438 veh-h/y	14,925 pers-h/y
Cost	541,890 \$/y	541,890 \$/y
Fuel Consumption	57,755 L/y	•
Carbon Dioxide	138,108 kg/y	
Hydrocarbons	10 kg/y	
Carbon Monoxide	154 kg/y	
NOx	298 kg/y	

MOVEMENT SUMMARY

▽ Site: 101 [Bridge_Old Hume_AM_Fut (Site Folder: General)]

New Site

Site Category: (None) Give-Way (Two-Way)

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	INF VOLU [Total veh/h		DEM FLO [Total veh/h		Deg. Satn v/c		Level of Service		ACK OF EUE Dist] m	Prop. I Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed km/h
South	n: Old I	Hume Hv	vy											
1 2 Appro	L2 T1 oach	56 546 602	8 31 39	59 575 634	14.3 5.7 6.5	0.341 0.341 0.341	5.8 0.1 0.6	LOS A LOS A NA	0.0 0.0 0.0	0.0 0.0 0.0	0.00 0.00 0.00	0.05 0.05 0.05	0.00 0.00 0.00	57.1 59.3 59.1
North	n: Old H	Hume Hw	/y											
8	T1 R2	481 85	29 8	506 89	6.0 9.4	0.272 0.111	0.1 9.1	LOS A LOS A	0.0 0.4	0.0 3.4	0.00 0.59	0.00 0.79	0.00 0.59	59.8 50.5
Appro		566	37	596	6.5	0.272	1.4	NA	0.4	3.4	0.09	0.12	0.09	58.2
West	: Bridg	e St												
10 12	L2 R2	131 90	5 6	138 95	3.8 6.7	0.160 0.161	8.4 10.8	LOS A LOS A	0.6 0.5	4.5 4.0	0.55 0.70	0.78 0.88	0.55 0.70	51.3 49.1
Appro	oach	221	11	233	5.0	0.161	9.4	LOSA	0.6	4.5	0.61	0.82	0.61	50.4
All Vehic	cles	1389	87	1462	6.3	0.341	2.4	NA	0.6	4.5	0.13	0.20	0.13	57.2

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: POSITIVE TRAFFIC PTY LTD | Licence: PLUS / 1PC | Processed: Thursday, 16 December 2021 8:40:51 PM

Project: Z:\2021 Projects\PT21001 - 120-140 Bridge Street, Picton\SIDRA\PT21001.sip9

INTERSECTION SUMMARY

▽ Site: 101 [Bridge_Old Hume_PM_Ex (Site Folder: General)]

New Site

Site Category: (None) Give-Way (Two-Way)

Intersection Performance - Hourly Values		
Performance Measure	Vehicles	Persons
Travel Speed (Average)	57.1 km/h	57.1 km/h
Travel Distance (Total)	1797.4 veh-km/h	2156.9 pers-km/h
Travel Time (Total)	31.5 veh-h/h	37.8 pers-h/h
Desired Speed (Program)	60.0 km/h	·
Speed Efficiency	0.95	
Travel Time Index	9.46	
Congestion Coefficient	1.05	
Demand Flows (Total)	1774 veh/h	2128 pers/h
Percent Heavy Vehicles (Demand)	4.4 %	2120 pers/II
Degree of Saturation	0.375	
Practical Spare Capacity	161.3 %	
Effective Intersection Capacity	4730 veh/h	
Effective intersection Capacity	4730 Veli/II	
Control Delay (Total)	1.22 veh-h/h	1.47 pers-h/h
Control Delay (Average)	2.5 sec	2.5 sec
Control Delay (Worst Lane)	13.9 sec	
Control Delay (Worst Movement)	13.9 sec	13.9 sec
Geometric Delay (Average)	1.4 sec	
Stop-Line Delay (Average)	1.1 sec	
Idling Time (Average)	0.5 sec	
Intersection Level of Service (LOS)	NA	
050/ Daala of Occasion (Marcel Lana)	0.0	
95% Back of Queue - Vehicles (Worst Lane)	0.9 veh	
95% Back of Queue - Distance (Worst Lane)	7.2 m 0.00	
Ave. Queue Storage Ratio (Worst Lane)	0.00 356 veh/h	407
Total Effective Stops	0.20	427 pers/h 0.20
Effective Stop Rate Proportion Queued	0.20	0.20
Proportion Queued Performance Index		
renormance muex	34.9	34.9
Cost (Total)	1350.28 \$/h	1350.28 \$/h
Fuel Consumption (Total)	136.4 L/h	·
Carbon Dioxide (Total)	325.0 kg/h	
Hydrocarbons (Total) [′]	0.024 kg/h	
Carbon Monoxide (Total)	0.374 kg/h	
NOx (Total)	0.559 kg/h	
	_	

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

NA: Intersection LOS for Vehicles is Not Applicable for two-way sign control since the average intersection delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Site Model Variability Index (Iterations 3 to N): 4.5 %

Number of Iterations: 7 (Maximum: 10)

Largest change in Lane Degrees of Saturation for the last three Flow-Capacity Iterations: 2.6% 1.3% 0.6%

Intersection Performance - Annual Values				
Performance Measure	Vehicles	Persons		
Demand Flows (Total)	851,369 veh/y	1,021,642 pers/y		
Delay	587 veh-h/y	704 pers-h/y		
Effective Stops	170,969 veh/y	205,163 pers/y		
Travel Distance	862,755 veh-km/y	1,035,306 pers-km/y		
Travel Time	15,120 veh-h/y	18,144 pers-h/y		
Cost	648,136 \$/y	648,136 \$/y		
Fuel Consumption	65,492 L/y			
Carbon Dioxide	155,980 kg/y			
Hydrocarbons	12 kg/y			
Carbon Monoxide	179 kg/y			
NOx	268 kg/y			

MOVEMENT SUMMARY

V Site: 101 [Bridge_Old Hume_PM_Ex (Site Folder: General)]

New Site

Site Category: (None) Give-Way (Two-Way)

Vehi	cle M	ovemen	t Perfor	mance										
Mov ID	Turn	INF VOLU	JMES	DEM. FLO	WS	Deg. Satn		Level of Service	QUI	ACK OF EUE	Prop. E Que	ffective Stop		Aver. Speed
		[Total veh/h	HV] veh/h	[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
South	n: Old	Hume Hv	vy											
1	L2	75	1	79	1.3	0.370	5.7	LOSA	0.0	0.0	0.00	0.07	0.00	57.5
2	T1	588	27	619	4.6	0.370	0.1	LOSA	0.0	0.0	0.00	0.07	0.00	59.1
Appro	oach	663	28	698	4.2	0.370	8.0	NA	0.0	0.0	0.00	0.07	0.00	58.9
North	: Old	Hume Hw	vy											
8	T1	676	22	712	3.3	0.375	0.1	LOSA	0.0	0.0	0.00	0.00	0.00	59.8
9	R2	154	18	162	11.7	0.225	10.1	LOSA	0.9	7.2	0.64	0.86	0.66	49.7
Appro	oach	830	40	874	4.8	0.375	2.0	NA	0.9	7.2	0.12	0.16	0.12	57.6
West	: Bridg	je St												
10	L2	120	2	126	1.7	0.153	8.6	LOSA	0.6	4.1	0.56	0.79	0.56	51.2
12	R2	72	4	76	5.6	0.186	13.9	LOSA	0.6	4.4	0.80	0.93	0.83	47.1
Appro	oach	192	6	202	3.1	0.186	10.6	LOSA	0.6	4.4	0.65	0.84	0.66	49.6
All Vehic	eles	1685	74	1774	4.4	0.375	2.5	NA	0.9	7.2	0.13	0.20	0.14	57.1

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA: Intersection LOS and Major Road Approach LOS values are Not Applicable for two-way sign control since the average delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.0 | Copyright © 2000-2020 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: POSITIVE TRAFFIC PTY LTD | Licence: PLUS / 1PC | Processed: Thursday, 16 December 2021 8:40:51 PM

Project: Z:\2021 Projects\PT21001 - 120-140 Bridge Street, Picton\SIDRA\PT21001.sip9

INTERSECTION SUMMARY

▽ Site: 101 [Bridge_Old Hume_PM_Fut (Site Folder: General)]

New Site

Site Category: (None) Give-Way (Two-Way)

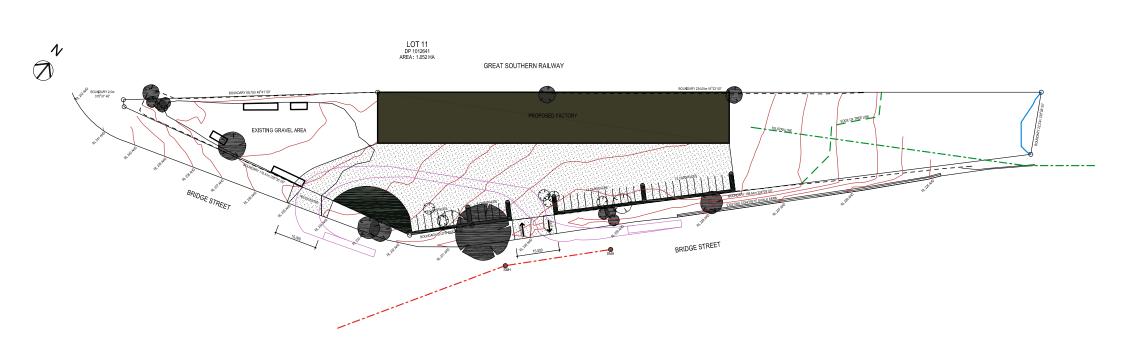
Intersection Performance - Hourly Values		
Performance Measure	Vehicles	Persons
Travel Speed (Average) Travel Distance (Total) Travel Time (Total) Desired Speed (Program) Speed Efficiency Travel Time Index Congestion Coefficient	56.9 km/h 1827.3 veh-km/h 32.1 veh-h/h 60.0 km/h 0.95 9.43 1.05	56.9 km/h 2192.7 pers-km/h 38.5 pers-h/h
Demand Flows (Total) Percent Heavy Vehicles (Demand) Degree of Saturation Practical Spare Capacity Effective Intersection Capacity	1803 veh/h 4.3 % 0.375 161.3 % 4807 veh/h	2164 pers/h
Control Delay (Total) Control Delay (Average) Control Delay (Worst Lane) Control Delay (Worst Movement) Geometric Delay (Average) Stop-Line Delay (Average) Idling Time (Average) Intersection Level of Service (LOS)	1.31 veh-h/h 2.6 sec 14.2 sec 14.2 sec 1.5 sec 1.2 sec 0.5 sec NA	1.58 pers-h/h 2.6 sec 14.2 sec
95% Back of Queue - Vehicles (Worst Lane) 95% Back of Queue - Distance (Worst Lane) Ave. Queue Storage Ratio (Worst Lane) Total Effective Stops Effective Stop Rate Proportion Queued Performance Index	1.0 veh 7.7 m 0.00 382 veh/h 0.21 0.14 35.7	458 pers/h 0.21 0.14 35.7
Cost (Total) Fuel Consumption (Total) Carbon Dioxide (Total) Hydrocarbons (Total) Carbon Monoxide (Total) NOx (Total)	1376.03 \$/h 138.9 L/h 330.8 kg/h 0.025 kg/h 0.380 kg/h 0.561 kg/h	1376.03 \$/h

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

NA: Intersection LOS for Vehicles is Not Applicable for two-way sign control since the average intersection delay is not a good LOS measure due to zero delays associated with major road movements.

Delay Model: SIDRA Standard (Geometric Delay is included).

Queue Model: SIDRA Standard.


Site Model Variability Index (Iterations 3 to N): 4.8 %

Number of Iterations: 7 (Maximum: 10)

 $Largest\ change\ in\ Lane\ Degrees\ of\ Saturation\ for\ the\ last\ three\ Flow-Capacity\ Iterations:\ 2.8\%\quad 1.3\%\quad 0.7\%$

Performance Measure	Vehicles	Persons
Demand Flows (Total)	865,516 veh/y	1,038,619 pers/y
Delay	631 veh-h/y	757 pers-h/y
Effective Stops	183,380 veh/y	220,056 pers/y
Fravel Distance	877,097 veh-km/y	1,052,516 pers-km/y
Travel Time	15,412 veh-h/y	18,494 pers-h/y
Cost	660,492 \$/y	660,492 \$/y
Fuel Consumption	66,692 L/y	
Carbon Dioxide	158,797 kg/y	
Hydrocarbons	12 kg/y	
Carbon Monoxide	183 kg/y	
NOx	269 kg/y	

9. Appendix C – Plans of Potential Development Arrangement

10. Appendix D – 19.0m Semi Trailer Turning Path Assessment

LOT 11 DP 1012641 AREA: 1.052 HA GREAT SOUTHERN RAILWAY BOUNDARY 2.5m 315⁰37' 40" BOUNDARY 234,05m 51⁰23' 00" BOUNDARY 89.72m 49⁰41' 00" PROPOSED FACTORY EXISTING GRAVEL AREA BRIDGE STREET BRIDGE STREET